

DIALOGFORUM Urbane Energiesysteme der Zukunft Nachhaltig.Intelligent.Effizient.

Mit freundlicher Unterstützung von

Diskussionsforum: Bioabfall, Juli 2020

Präsentation "Energieertrag-Prognosemodell Bioabfall"

Gregor Sailer

Ziele der Arbeiten

• Besseres Verständnis bzw. **Datengrundlage** für den Rohstoff "kommunaler Bioabfall (Biotonne)" schaffen

Abb. 1: Impressionen Biotonne nach Siedlungsstruktur und Jahreszeit

Ziele der Arbeiten

• Verwertungsoptionen (Strom, Wärme, Kraftstoffe, Chemikalien) aber auch Herausforderungen für Biotonne-Verwertung (Komponenten) aufzeigen

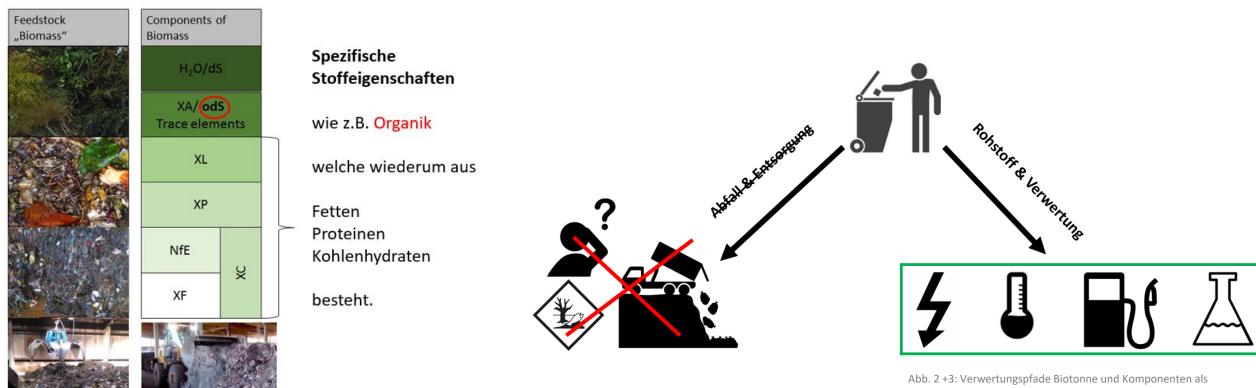


Abb. 2 +3: Verwertungspfade Biotonne und Komponenten als Herausforderung

Wertschöpfungskette

Kombinierte Verwertung (Biogas/Kompostierung) im Fokus

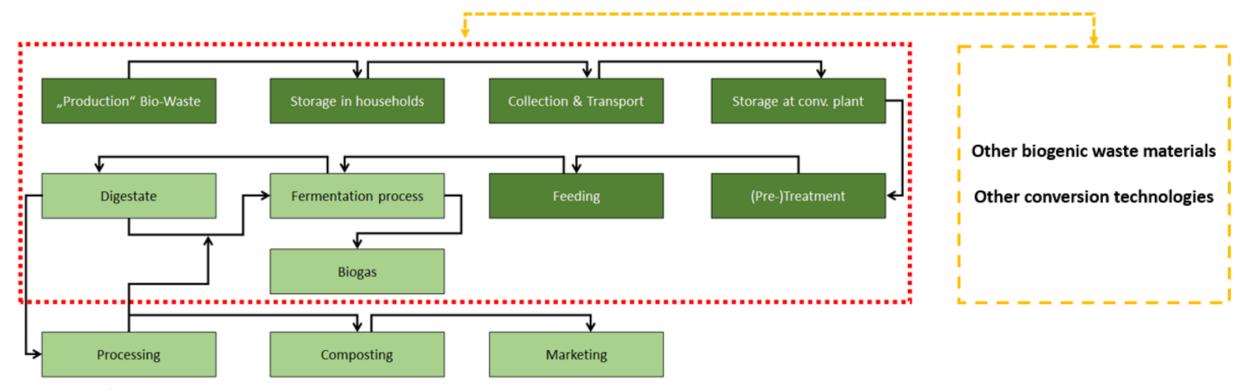


Abb. 4: Wertschöpfungskette Biotonne und tangierte Bereiche

Einzelne Fragestellungen (Publikationen)

- Grundlagen für Tool sind u.a.
 - Langzeit-Charakterisierung → Zusammensetzung Biotonne
 - Lagerung von Biotonne → Einfluss Lagerung auf Energiegehalt
 - Biotonne Biogas-Verwertung -> Steigerung von Energieerträgen im Biogasprozess
 - Biotonne HTC/thermo-chemisch → Upgrading von Stoffeigenschaften

Kombination einzelner Fragestellungen

• Zielzustand = Wertschöpfungskette über Tool abgebildet um beispielsweise

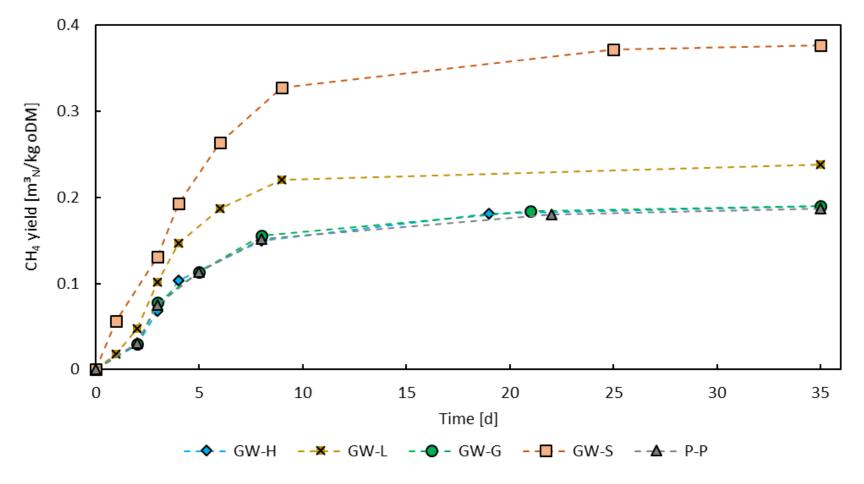


Abb. 5: Anwendungsbeispiel – Energieerträge für Biogasanlagen prognostizieren

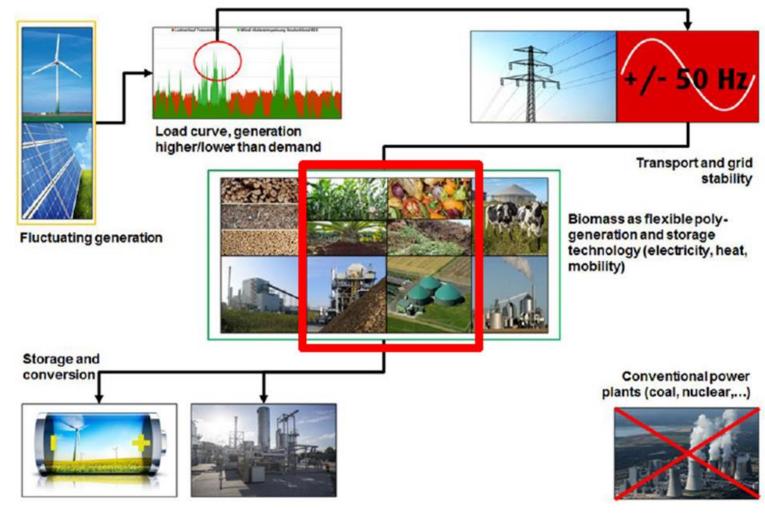
Vielen Dank für Ihre Aufmerksamkeit!

Kontakt: Gregor Sailer, Hochschule Rottenburg (sailer@hs rottenburg.de)

besuchen Sie die ENsource Webseite

www.ensource.de

Das Projekt ENsource wird gefördert durch das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg und dem Europäischen Fond für regionale Entwicklung (EFRE). Aktenzeichen:FEIH_ZAFH_1248932.


Partner: HFT Stuttgart / HS Aalen / HS Biberach / HS Heilbronn / HS Mannheim / HS Pforzheim / HS Reutlingen / HS Rottenburg / Fraunhofer ISE / IGTE / ZSW

ANHANG

Einordnung in die Energiewirtschaft

Bioenergie im Kontext regenerativer Energiesysteme

Charakterisierung Biotonne als Datengrundlage

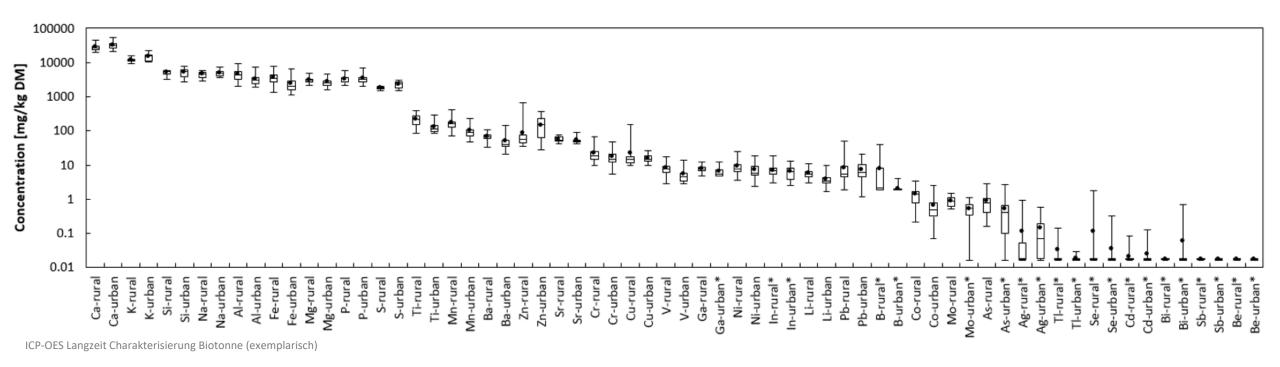


Tabelle 1: Exemplarisch; Zusammenfassung Langzeit Charakterisierung Biotonne

settlement	Impurities	DM	WC	рН	oDM	Ash	C	Н	N	S	0	Biogas	Biogas	CH ₄	CH ₄
structure	[% DM]	[% FM]	[% FM]	[-]	[% DM]	[L _N /kg FM]	[L _N /kg oDM]	[L _N /kg FM]	[L _N /kg <u>oDM</u>]						
rural	2.83	32.86	67.14	5.38	82.22	17.78	42.37	5.62	1.99	0.18	32.06	271	1,004	140	519
	±1.67	±2.35	±2.35	±0.46	±4.16	±4.16	±2.10	±0.36	±0.17	±0.01	±2.56	±18	±30	±11	±26
urban	5.07	30.50	69.50	5.25	84.59	15.41	44.31	5.86	2.15	0.23	32.03	263	1,022	137	533
	±2.71	±1.75	±1.75	±0.43	±3.90	±3.90	±1.88	±0.29	±0.23	±0.05	±2.41	±16	±27	±9	±22
p-value	0.004	0.001	0.001	0.580	0.070	0.070	0.004	0.022	0.018	<0.001	0.973	0.185	0.051	0.382	0.080

Charakterisierung Biotonne als Datengrundlage

